
Parallel I/O on Compressed Data Files: Semantics,
Algorithms, and Performance Evaluation

Siddhesh Pratap Singh and Edgar Gabriel

Parallel Software Technologies Laboratory, Department of Computer Science,
University of Houston, Houston, TX 77204-3010, USA.

Email: {spsingh, egabriel}@uh.edu

Abstract—Many scientific applications operate on data sets
that span hundreds of Gigabytes or even Terabytes in size. Large
data sets often use compression to reduce the size of the files.
Yet as of today, parallel I/O libraries do not support reading and
writing compressed files, necessitating either expensive sequential
compression/decompression operations before/after the simula-
tion, or omitting advanced features of parallel I/O libraries, such
as collective I/O operations. This paper introduces parallel I/O on
compressed data files, discusses the key challenges, requirements,
and solutions for supporting compressed data files in MPI I/O,
as well as limitations on some MPI I/O operations when using
compressed data files. The paper details handling of individual
read and write operations of compressed data files, and presents
an extension to the two-phase collective I/O algorithm to support
data compression. The paper further presents and evaluates an
implementation based on the Snappy compression library and
the OMPIO parallel I/O framework. The performance evaluation
using multiple data sets demonstrate significant performance
benefits when using data compression on a parallel BeeGFS file
system.

I. INTRODUCTION

Many scientific applications operate on data sets that span
hundreds of Gigabytes or even Terabytes in size. These
applications often spend a significant amount of time reading
and writing input and output files. To cope with the challenges
posed by file I/O, High Performance Computing (HPC) appli-
cations have long relied on parallel I/O APIs and libraries such
as MPI I/O [27], HDF5 [19], NetCDF [9], or ADIOS [25].
These libraries offer a number of unique features that have
contributed to their success, such as collective I/O operations,
i.e. functions that allow an application to express file access of
an entire group of processes semantically as a single, logical
operation [11, 14].

A typical example for a data file used in an HPC application
contains a multi-dimensional matrix, stored in binary format
using e.g. row-major ordering. The dimensions of the matrix
can easily be determined, and every row/column as well as
every element have the same extent and size. If – as part of
the data decomposition in the parallel application – a process
is required to read/write a certain number of rows of the
matrix, it can easily calculate the precise offsets into the
file to access those elements. The ability of each process to
calculate the offsets for the elements of interest is an essential
requirement for parallel I/O: all processes can simultaneously

start to read/write different parts of the file, without interfering
(logically) with each other.

Large data sets are often compressed to reduce the size of a
file, save space on a storage system, and to minimize transfer
times when downloading a large file from a remote resource.
Yet, as of today, parallel I/O libraries are not able to operate
on compressed data files. Applications using compressed data
files will have to decompress the file before the start of the
simulation, and compress resulting output files after the sim-
ulation has finished. This is however highly inefficient, since
sequential compression of large data files is very expensive.
To give an example, compressing one of the data files also
used later in the evaluation section of this paper – with 16
GB arguably a smaller data set using today’s standards – with
the popular gzip [17] tool took more than 28 minutes on an
Intel Xeon E5-2680 processor.

A more performant solution would be for the parallel I/O
library to be able read and write compressed data files, making
sequential compression and decompression unnecessary, and
allowing to take advantage of other features that parallel I/O
libraries have to offer. This is however for multiple reasons
highly challenging. The main difficulty stems from the fact
that there is no (easy) calculation that can be performed to map
the logical, uncompressed offset of an element in a file – i.e.
what an MPI application would operate on based on the current
MPI I/O interfaces and syntax – and the actual position of the
element in the compressed data file. Furthermore, accessing
a particular element might require reading/writing more than
just the requested item.

This paper introduces parallel I/O on compressed data
files, discusses the key challenges, requirements, and solutions
for supporting compressed data files in MPI I/O. The key
contributions of the paper are i) discussion of the impact on
MPI I/O operations when using compressed data files, ii) detail
handling of individual read and write operations of compressed
data files; iii) present an extension to the two-phase collective
I/O algorithm to support data compression; and iv) evaluate
an implementation supporting parallel I/O on compressed data
files based on the Snappy [8] compression library and the
OMPIO [12] parallel I/O framework.

The remainder of the paper is organized as follows. Sec-
tion II describes the requirements, limitations, and concepts
required to use compressed data files for parallel I/O oper-



ations. Section III introduces the algorithms and techniques
developed to support parallel I/O on compressed data files, and
provides the most relevant implementation details. Section IV
evaluates the performance of our solution on multiple data sets.
Section V discusses the most relevant related work in the area.
Finally, section VI summarizes the contributions and findings
of the paper, and lays out the future work in this domain.

II. GOALS, REQUIREMENTS AND LIMITATIONS

The main goal of this research is to support compressed data
files in MPI I/O. MPI introduced the notion of parallel I/O in
version two of the specification. In combination with parallel
file systems, MPI I/O has been shown to significantly improve
the performance of I/O operations compared to sequential I/O
libraries. The most distinct features of MPI I/O include:

1) Collective I/O: the ability to abstract the file I/O op-
erations of a group of processes as a single, logical
operation;

2) File view: registering an access plan to the file in
advance;

3) Relaxed consistency semantics: updates to a file might
initially only be visible to the process performing the
action;

4) Shared File pointers: manage a single file pointer for a
group of processes.

To maximize the usability and impact of our work, we
aim to further achieve this goal by taking the following
requirements into account.
• Minimize changes required to an application for read-

ing/writing compressed data files. For example, an appli-
cation should be able to use the same code to specify a
file view and the same syntax for MPI_File_read or
MPI_File_write operations for a compressed file as
it does for uncompressed files.

• Maximize performance of parallel I/O operations on
compressed data files. For this, it is essential that the
compressed output file is created in a single pass, and
avoids a two step process, i.e. writing first an uncom-
pressed file, and compress it in a secondary step. Similar
requirements apply for reading a compressed data file.

• Interoperability with other tools/libraries supporting the
same compression algorithm: a compressed output file
created by the parallel I/O library has to be readable by
another tool using the same compression algorithm or
library. Similarly, a data file created and compressed by
an external application/tool has to be a valid input file
for the parallel I/O library. This requirement equates to
the parallel I/O library being fully compliant with the
specification of the compression algorithm.

As discussed earlier, parallel I/O operations rely on the
ability of each process to i) calculate offsets into the file, and
ii) execute file operations independently of each other. The
first item also poses the main challenge in this work, since
it is not easily possible to map a logical, uncompressed file
offset – i.e. what e.g. an MPI application would operate on

based on the current interfaces and syntax – into an actual
offset in the compressed file. Consider for example, process 0
trying to write 64KB of data at the beginning of the file (offset
= 0), and process 1 trying to write 128KB of data right after
the data of process 0, namely at (logical, uncompressed) offset
64KB. If no compression is applied, the second process can
seek its file pointer to the correct position in the output file,
and both processes can write their data simultaneously. This
is however not possible with compression. Process 1 does not
know the size of the compressed buffer of process 0. If the data
of process 1 is expected to follow in the file the data of process
0 without leaving a gap, process 1 can only perform the write
operation after process 0 has finished compressing its data, and
either finished writing its data to the file, or communicates the
size of its compressed buffer to process 1.

In order to support parallel processing on a compressed
data file, the compression algorithm has to support concurrent
compression/decompression of different portions of the file,
typically by operating on a chunk-by-chunk basis. Compres-
sion libraries such as Snappy [8] or bzip [18] fulfill this
criteria, while some other libraries such as 7z [35] do not. Most
compression formats do not tolerate gaps in the compressed
file. This restricts on how data can be written and what is
considered a valid access pattern when writing a file. (Note,
that if one would lift the interoperability requirement, one
could allow for gaps in the compressed file. This could be
explored at later stages of our work e.g. by developing a new
internal data representation for the MPI I/O library).

This limitation (no gaps in the resulting file) and per-
formance considerations introduce two restrictions on the
parallel I/O operations invoked by an application operating
on compressed data files.
• Monotonically increasing offsets for write operation:

The offsets used into the file have to be monotonically
increasing per write call. It is thus not allowed to re-
write parts of an existing file. Since the compression ratio
depends on the actual data to be compressed, the ’new’
part of the file will typically have a different compressed
length than the original one. Since no gaps are allowed
in the resulting output file, the entire remainder of the
file would have to be relocated/rewritten, which is not
an option for large files. For very similar reasons, it is
also not allowed to leave a gap in the file with a write
operation, and fill it with a subsequent write operation.

• Individual write operations are only permitted from
a single process : When using individual I/O operations,
each process performs its own write operations without
coordinating with other processes. Since the length of a
compressed block is not known except for the process
performing the compression, having multiple processes
performing individual write operations would inadver-
tently lead to gaps in the file, or processes overwriting
each others data. Note that there are alternative interface
that allow multiple processes to write data simultane-
ously, namely collective I/O operations and shared file
pointer operations.



There are no restrictions on read operations. Collective
write operations are conceptually supported as long as they
fulfill the first requirement (monotonically increasing offsets).
While some of these limitations seem restrictive compared to
the flexibility offered by the MPI I/O specification for non-
compressed data files, it should be noted that the Hadoop
Filesystem [26] (HDFS) has very similar restrictions regarding
re-writing files and the offset requirements (one can only
append to an existing file in HDFS), and it did not seem to
hinder most applications. Furthermore, the fact that MPI I/O
specification already included a mode where only one process
is allowed to access the file (MPI_MODE_SEQUENTIAL)
indicates that these type of restrictions have been anticipated
for certain environments and have been considered acceptable.
The user still has the ability to fully exploit multi-process
parallel I/O for this scenario by using collective I/O operations
or shared file pointer operations.

III. CONCEPT AND IMPLEMENTATION DETAILS

In the following we present the conceptual and algorithmic
solutions for supporting compressed data files as well as the
most relevant implementation details.

A. Individual I/O

Individual file I/O operations are defined in MPI I/O to
be executed by each process separately and without any
coordination across processes. In contrary to the collective
I/O operations discussed in the next subsection, a process
executing an individual read or write operation does not
have the ability to determine whether another process is also
executing a file I/O operation at the same time. Conceptually,
supporting individual write operations for compressed data
files requires i) allocating a temporary buffer to compress a
chunk of the user provided input buffer; ii) compressing the
data; iii) writing the compressed chunk to file. An I/O library
might be able to overlap compressing one chunk with the
file write operation of the previous chunk by using multiple
threads.

Individual read operations will require a similar approach:
the parallel I/O library will have to allocate enough tempo-
rary buffer to read in an entire chunk of the compressed
file, read the chunk(s) from the compressed data file that
contains the requested data items, decompress a chunk, and
copy the requested data from the temporary buffer into the
buffer provided by the user code for this operation. A crucial
aspect to increase the performance of read operations will
rely on the ability to quickly identify the part of the file
that contains the data items requested by the user. Recall that
the user codes provides the (offset, length) information
for the read operation in terms of uncompressed data (since
this is the semantics used e.g. in MPI I/O). The parallel
I/O library will have to locate the location of that starting
byte in the compressed data files given the uncompressed
offset. To accelerate this operation, we introduce an annotation
file, which maintains a list of (uncompressed offset,
compressed offset) tuples for each chunk (or every n

th chunks) in the data file. This allows to restrict the search for
a particular offset to i) scanning of the annotation file (which
is orders of magnitudes smaller than the data file itself) and ii)
reading a subset of the compressed data file. The annotation
file will be automatically generated by the parallel I/O library
when writing a file. If the user provides however a data file
that was created and compressed by another library (e.g. a
Spark application), a stand-alone tool can be used to generate
the annotation file.

B. Collective I/O

Collective I/O operations represent higher level APIs which
allow to reorder data across processes to match the layout
of the data on the file system level. Consider as an example
a scenario, where four processes operate jointly on a matrix
stored in a file. The overall matrix size is 128×128 elements,
and each process holds a subset of the matrix of 64 × 64
elements. If the 2-D matrix is stored using a row-major
ordering, the data stored in the file does not match logically the
data distribution across the process, since the 128 elements of
each row are distributed across two processes. Collective I/O
operations allow to re-arrange the data among the processes for
read and write operations to match the layout of the data on the
file system. Thus, it allows to decouple the data decomposition
used on the process level from the data layout on the file
system level.

The most widely used algorithm for collective I/O is the
two-phase I/O [34] algorithm, which – as the name implies
– consists of two steps. For a write operation, the first phase
redistributes data among the processes to match the layout
of the data on the file (also referred to as the shuffle step),
while the second phase executes the actual write operation.
The redistribution is necessary, since most file systems impose
a significant performance penalty if data is not written in the
same order as it is stored in the file.

The two-phase I/O algorithm introduces two further opti-
mizations. First, only a subset of the MPI application processes
actually touch the file, i.e., perform read or write operations.
The processes executing file I/O operations are also referred
to as the aggregators. Second, for very large collective read
and write operations, the two-phase I/O algorithm splits the
data and performs the operation internally in multiple cycles.
This keeps additional memory requirements on the aggregator
processes within reasonable limits, and allows for potential
overlap of the shuffle step and the write operation of subse-
quent cycles.

For collective I/O writing compressed data files, the im-
plementation is still based on the standard two-phase I/O
algorithm, with a number of additional challenges. In the
following, we will only highlight one aspect, namely whether
the compression of the user provided data shall be done on
each individual process before communicating with aggregator
processes, or whether to perform that operation on the aggrega-
tor processes. The second option seems initially more intuitive,
since data from multiple processes is assembled based on
their offset in the file by the aggregator. This approach has



however one major downside. Recall that in the two-phase
I/O algorithm, each aggregator is responsible for writing 1/na

th of the overall data to be written. For example, if the total
amount to be written in a single MPI_File_write_all
function call is 12GB, and four aggregators are being used,
the first aggregator will write bytes 0−(3GB−1), the second
aggregators will write bytes 3GB − (6GB − 1), etc.. Since
one of our previously discussed restrictions is that the output
file cannot contain any gaps, the second aggregator will have
to wait on the first aggregator to report the overall size of
its compressed buffers in order to determine its starting offset
into the file. This would lead to serialization of the aggregator
operations or require aggregators to hold a copy of the entire
compressed data that they have to write in memory before
starting the actual write operations, which is not feasibly in
most cases.

When using the first option, each process compresses their
own data locally before the shuffle step performed as part
of the two-phase I/O algorithm. While this approach will also
increase the memory footprint of every process since they have
to hold the entire compressed buffer in memory before starting
the data transfer to the aggregators, the additional memory
requirements are still more manageable than in the second
scenario. Furthermore, it increases the level of parallelism for
the data compression. The downside of this approach however
is that it can lead to a larger number of smaller ’compressed
chunks’ compared to the second option.

Algorithm 1 provides the logical operations occurring in the
two-phase collective write operation using data compression.
Note, that elements enlisted in curly brackets { } represent
arrays in this annotation. The input to this algorithms is a
buffer in the main memory of each processes, a derived MPI
datatype that describes the layout of the data in the memory
of a process, and an MPI file handle. The MPI file handle will
have a file view attached to it, which provides a description
of which parts of the file a process will write to.

At the beginning of the algorithm, each process flattens the
derived datatype describing its data layout in memory into
a vector of memory addresses and length, and matches it
with the file offsets obtained by flattening the derived datatype
stored as the file view, providing a description of where each
chunk of data will have to be written (line 1). Each processes
determines the total number of bytes written as part of this
collective I/O operation (line 2), and the overall amount of
data written across all processes (line 3). The total number
of bytes written and the product of the number of bytes
written per cycle and the number of aggregator processes is
being used to determine the number of internal cycles it will
take to execute this collective write operation (line 4). The
smallest and largest file offsets across all processes are being
used to identify the part of the file that is being modified
during this file write all operation, and each aggregator has
a subset of this file domain assigned to it (line 5). Using
multiple All-gather(v) operations, a global sequence of file
offsets and length are being constructed, allowing each process
to calculate how many bytes of data they have to contribute

Algorithm 1 Two-Phase Collective Write Operation with Data
Compression
Require: memory buffer, count, datatype, file handle, file

view, NumberOfAggregators, BytesPerCycle
1: Convert file view, memory buffer, count, datatype into a

vector of {MemoryAddress, F ileOffset, Length}k on
every process k

2: Calculate number of bytes DataOnProck to be written
by process k

3: TotalData←
∑

(DataOnProck) (Allreduce)
4: NumberOfCycles← dTotalData/(BytesPerCycle×

NumberOfAggregators)e
5: Calculate file domain for each aggregator j.
6: Construct global vector of {FileOffsetg , Lengthg ,

PocessIdg} as a union of {FileOffset, Length}k of
every process k (Allgatherv)

7: Sort global vector {FileOffsetg, Lengthg, P rocessIdg}
based on the FileOffsets.

8: Determine on every process k the vector of
{FileOffset′, Length′}ji for the data process k
needs to send to aggregator j in cycle i.

9: Compress every buffer belonging to each tuple
{FileOffset′, Length′}ji separately.

10: Send {CompressedLength}jk from process k to aggre-
gator j

11: if ProcessId is aggregator then
12: for k=0 to NumberOfProcesses do
13: Recv {CompressedLength}k
14: end for
15: Use {CompressedLength} to recalculate

{FileOffsetsg} using the same order of elements
as determined in line 8 and replacing every
corresponding entry of Lengthg with the new
value CompressedLength

16: Calculate compressed starting offset for each aggregator
domain (Exscan)

17: end if
18: for i=0 to NumberOfCycles do
19: for j=0 to NumberOfAggregators do
20: Send Dataji to aggregator j
21: if ProcessId is aggregator then
22: for k=0 to NumberOfProcesses do
23: Recv data from process k
24: end for
25: Write Data to disk
26: end if
27: end for
28: end for

in each cycle to each aggregator (lines 6-8).
The key additions to the standard algorithm are given in

lines 10 – 18. After determining which parts of its buffer have
to be sent to each aggregator in a given cycle (line 8), each
process compresses its data following this partitioning (line
9), and communicates the length of the compressed buffers



to the aggregators (line 10). An aggregator consequently
has to update its own calculations, replacing the original,
uncompressed length with the compressed length for the same
data item(s), and recalculate the offset where the data will be
written using the compressed length (line 15). The order of
the data items in the compressed file will still be based on
the order obtained by sorting the uncompressed offsets in line
7. Once every aggregators has updated its list of data items
that it has to write with the compressed lengths, it can use
the largest offset value plus the compressed length of the last
item to calculate the starting offset for the next aggregators.
This last step can be implemented efficiently in MPI using the
MPI_Exscan function. Lines 17-24 perform than the data
aggregation step in each cycle, followed by the system level
write operation of the aggregators (line 25).

Overall, the extended two-phase collective write algorithm
requires some additional communication of meta-data such as
offsets and length (lines 10, 13, and 16). However, the com-
munication of actual data buffers (lines 20 and 23) occur on
the compressed data buffers, which will in most circumstances
be smaller than the uncompressed buffers.

C. Shared file pointers

In contrast to individual file pointer operations discussed
so far, where the position of a file pointer is only dependent
on sequence of file I/O operations of a particular process, the
position of the shared file pointer is based on the sequence of
file I/O operations of the entire group of processes. Common
use-cases for shared-file pointers include dynamic workload
distribution (i.e. each process will fetch the next data item
from a shared input file), or writing a parallel log-file [22, 24].

Shared file pointers require an entity to manage the current
position of the shared file pointer. On file systems that support
file locking, this can be implemented by storing the position
of shared file pointer in a separate file, and use the file systems
locking mechanism to restrict access to this file to only one
process at a time. Thus, access to the shared file pointer file is
serialized, while access to the actual data file might still occur
in parallel. Supporting compressed data files for shared file
pointer operations require an extension to the format of the
shared file pointer file: instead of storing the current position
of the shared file pointer in the file, the parallel I/O library
will have to store the logical (uncompressed) offset into the
file as well as the actual offset into the compressed file.

D. Implementation details

To evaluate the practicality and the performance of the
solutions described in the previous subsections, we have
developed an implementation supporting compressed data files
in MPI I/O. The implementation is based on the OMPIO [12]
parallel I/O components of Open MPI and the Snappy [8]
compression library. The Open MPI project [16] is an open
source implementation of the MPI specification that is jointly
developed and maintained by a consortium of academic,
research, and industrial partners. The library is built around
the Modular Component Architecture (MCA), which allows

a compile time or runtime selection of the components used
by Open MPI. Each major functional area in Open MPI
has a corresponding back-end component framework, which
manages its own modules. This concept is used for example to
seamlessly support multiple network interconnects, or different
implementations of collective communication operations.

The same concept is exploited by OMPIO [12] to provide
a highly flexible parallel I/O infrastructure. OMPIO is im-
plemented as a module of the io framework of Open MPI.
Upon opening a file, the OMPIO component triggers the MCA
selection logic for multiple sub-framework, namely:
• The file system framework (fs): abstracts general file

manipulation operations, such as opening, closing, and
deleting a file.

• The file byte-transfer layer framework (fbtl): provides the
abstraction for individual read and write operations.

• The file collective I/O framework (fcoll) : provides the
abstraction for collective file I/O operations.

• The shared file pointer framework (sharedfp) : abstracts
functions for managing the shared file pointer.

Each module within the component framework is an in-
dependent unit which can configure, build and install itself.
More than one module may exist within each framework and
multiple modules from a framework may be used within the
runtime of an Open MPI program.

Snappy [8] is a compression/decompression library devel-
oped by Google and widely utilized and deployed in the
Data Science community e.g. within Hadoop and Spark [36]
applications. Snappy aims to maximize compression and de-
compression speeds while maintaining reasonable compres-
sion ratios. The Snappy file format fulfills the requirements
described above for parallel I/O: by default, Snappy operates
on 64KB chunk sizes [6]. Furthermore, the Snappy file format
defines that a concatenation of multiple Snappy compressed
files represent a valid Snappy file [6].

In order to support reading and writing a Snappy com-
pressed file using MPI I/O functionality, we developed multi-
ple components supporting the required operations, namely:
• composix: an fbtl component supporting individual read

and write operations of Snappy compressed files. The
component is dervied from the standard posix fbtl com-
ponent used by OMPIO on most parallel file systems.

• vulcomp: an fcoll component supporting collective read
and write operations of Snappy compressed files. The
component is an extension of the vulcan collective file I/O
component, which is used by OMPIO on all file systems
except for Lustre.

• clockedfile: a sharedfp component supporting reading
and writing Snappy compressed files using a shared
file pointer. The component is based on the lockedfile
sharedfp component, which requires file system support
for file locking.

These components are used in the subsequent performance
evaluations. In order to read or write a Snappy compressed
file, a user could use the standard Open MPI mechanism to



force the selection of these components, e.g. using additional
arguments to the mpirun command, or environment variables.
While this works, this approach has the downside that all files
used by that application will be forced to use these particular
components. To support selectively using compression on
some files but not on others, the user can provide a new
info object to the MPI_File_open() function requesting
data compression. The info object will force the framework
selection logic to select the new fbtl, fcoll, and sharedfp
components supporting Snappy compression.

It has been verified that an output file created by these
components can be correctly decompressed using the snzip
tool [5], a sequential compression/decompression tool based
on the Snappy algorithm, and vice versa, a file compressed
using the snzip tool could be read by the new components.

IV. PERFORMANCE EVALUATION

In the following, the performance of parallel I/O operations
for compressed data files is being evaluated for various data
sets. The focus is on collective write operations, since it rep-
resents i) the biggest difference and highest benefits compared
to sequential compression tools, and ii) since write operations
are significantly more complex than read operations.

The tests have been executed on the crill cluster at the
University of Houston. The cluster consists of 26 nodes with
approx. 1, 000 cores, and a QDR InfiniBand network intercon-
nect. The cluster has an NFS as well as a parallel BeeGFS v7.0
file system [7] distributed over 16 I/O servers, the latter being
the used for the subsequent tests. The BeeGFS file system uses
a stripe-size of 1 MB. The parallel I/O library used is based on
the master repository of Open MPI, using gcc version 4.8.5
and the Snappy compression library version 1.1.7. All test
have been executed at least three times, and the minimum
values across the measurement series is being presented in the
subsequent subsection, unless explicitly denoted differently.
Since the cluster was used in a dedicated mode for these
measurements, the variance between the individual runs was
less than 1% in most cases, and is being omitted for the sake
of clarity. The serial tests are run on a single node using
the snzip [5] compressor on the exact same dataset as the
collective tests.

A. Matrix tests

The first set of tests are based on a 2-D matrix of double
precision floating point values. The matrix values are chosen
semi-randomly from a bucket containing a fixed number of
floating point values, increasing the chances of a value to
be picked if it has not been used for a certain number of
requests. The elements in the bucket are generated using a
random number generator at the beginning of the test. The
size of the bucket enables us to control the compression ratio
of the matrices, and is used later in this section to evaluate
the impact of this parameter on the performance of the file
I/O operations.

The matrix size is determined by a user provided value and
the number of processes. For a user provided value of n and p

processes, each process holds a matrix of size n×n of 8-byte
floating point values. The overall matrix size is thus n×n×p
elements.

Two different data decomposition are explored as part of
the analysis, namely a one dimensional and a two dimensional
decomposition. For the 1-D case, each process holds a contigu-
ous number of rows of the matrix, while with 2-D decomposi-
tion each process holds a square block of the overall matrix. In
contrary to the 1-D distribution, every row of the global matrix
is distributed over multiple processes. The data distributions
are implemented in the test code using MPI derived datatypes
and file views. For the sake of uniformity across these tests,
all process counts used subsequently are square number, since
this simplifies the 2-D data decomposition significantly.

Fig. 1. Performance of a collective write operation for various process
counts and matrix sizes with and without data compression for a 1-D data
decomposition.

Tests have been executed for 64, 144, 256 and 529 processes
distributed equally on 16 compute nodes. The benchmarks
measure the time required to write the matrices to the BeeGFS
file system using MPI_File_write_all, with and without
compression. Data shown are for two local matrix sizes,
namely each process holding 2048 × 2048 elements of the
matrix, and 4096×4096 elements. Since the overall matrix size
scales with the number of processes used, the overall file sizes
used in this set of tests varies between 2GB for the smallest
test case presented here and 66GB for the largest one. For this
set of tests, the size of the bucket used to populate the matrix
has been set to 1, 000 elements, resulting in a compression
ratio (i.e. the ratio of the uncompressed vs. compressed file
size) between 1.55 and 1.8 and a size reduction of around 38
- 44% due to compression.

Fig. 1 shows the results obtained for the 1-D data distri-
bution. The results indicate significant performance improve-
ments when writing a compressed output file for all test cases,
performance benefits were more pronounced for larger file
sizes and process counts. The performance improvement of
writing a Snappy compressed output file vs. an uncompressed
one ranges from 17% for the smallest test case, up to 43% for
the largest test case.



Fig. 2. Performance of a collective write operation for various process
counts and matrix sizes with and without data compression for a 2-D data
decomposition.

The results obtained for the 2-D data decomposition are
shown in fig. 2. While the overall trend is similar to the
results obtained with the 1-D test cases, there are some
notable differences, which can be attributed to the fact that
the compression ratio obtained for the 2-D test cases are lower
than the 1-D test cases. Recall that the key difference between
the 1-D and the 2-D data decomposition is that a single row
of the global matrix is stored on a single process in the first
case, but not in the second one. As a consequence, all data
held be a single process in the 1-D test case is contiguous in
the file, and can thus be compressed into equal chunks using
the maximum chunk size supported by the Snappy library,
i.e. 64KB. That is not the case with the 2-D decomposition.
Assuming for example 64 processes and each process holding
4096× 4096 elements of a matrix, a single row of the global
matrix will consist of 4096 ×

√
64 elements. Since data is

compressed by each process individually (before aggregation),
and is restricted by the number of elements contiguous in
the file, the 2-D decomposition leads inadvertently to more
but smaller chunks than the 1-D decomposition. This leads
ultimately to the lower compression ratio and thus to somewhat
lower performance benefits compared to the 1-D case. Never-
theless, our tests show even for the 2-D test cases performance
improvements up to 32% when using data compression.

1) Timing Breakdown: To gain a better understanding of
the internal operations of a collective I/O operation, we
instrumented our code and measured the time spent in in-
dividual sections. This set of tests are using the 2-D data
decomposition, since they are representative of a large number
of parallel applications. Matrix sizes have been chosen for
the various process counts to generate a (nearly) constant size
output file, by scaling the dimensions of the matrices to match
the 529 process test case with a local matrix on each process
of 2048× 2048 elements.

The individual times and code sections monitored are:
• Compression: Amount of time spent by each process

performing compression on the data to be written.

Fig. 3. Breakdown of the individual components of a collective write
operation for a fixed problem size and different process counts.

• Meta Communication: Time needed to communicate in-
formation related to sizes and offsets.

• Data communication: Time spent on sending the data
buffers from processes to the aggregators.

• Sorting: Time needed by the aggregators to calculate
the compressed/uncompressed offsets and lengths before
performing the write operation.

• Write: Time taken to write the data to the file system
(aggregators only).

The results are shown in fig. 3. The results indicate that the
time taken to write the data to the file system by the aggrega-
tors is the most dominant component in the overall execution
of the collective I/O operation in these tests. Furthermore, it
seems that the write operations are able to saturate our file
system in these tests, since the write-time is roughly constant
and independent of the number of processes used. The time
spent on compression decreases with increasing number of
processes, as each process gets a smaller portion of the matrix
to compress.

From the time spent in communication operations, the
meta communication time increases with increasing number of
processes, while the data communication time decreases with
the number of processes when using a fixed problem size. Both
observations are in-line with the expected behaviour, since the
meta communication is mostly based on collective operations
(e.g. Allgather) which are typically becoming costlier with
increasing process counts, while the data communication is
mostly based on point-to-point operations, which become
cheaper for a fixed problem size when spreading it out to
more processes [20]. This effect is most pronounced with the
largest process count of 529 where the meta communication
time overtakes the compression and data communication time
combined.

The sorting operation takes according to this analysis the
least amount of time, is however increasing with increasing
process counts. This is the expected behavior for a fixed
problem size, since the same amount of data is split into more



and smaller chunks that are then being used in the sort step.

Fig. 4. Impact of the space saving factor on the execution time of a collective
write operation.

2) Impact of Size Reduction: In the next set of tests we ex-
plore the impact of the compression ratio on the performance
of the collective write operation. As discussed previously, the
compression ratio can be adjusted by changing the size of the
bucket used for populating the matrices, since the size of the
bucket controls how many distinct floating point values are
being used to populate the matrix: fewer values in the bucket
lead to a higher compression ratio. For the subsequent tests,
we used bucket sizes of 150 values, 1, 000 values and 5, 000
values. The resulting average space saving (or size reduction),
which is defined as

1− compressed size

uncompressed size

are approx. 65%, 38%, 26% respectively. The results shown in
fig. 4 indicate as expected a positive correlation between space
saving and performance, where the write time decreases as the
space saving ratio is increased.

B. Real World Data Sets

In this set of tests, we evaluate the performance benefits
of writing compressed output files using parallel I/O on
real world data sets. The benchmark in this case uses a
fixed size, uncompressed input file. It reads the input file
using MPI_File_read_all, and writes the data using
MPI_File_write_all requesting compression through
the info object mentioned earlier. The test thus mimics a
standard compression tool, except for the fact that all I/O oper-
ations occurring are using collective I/O. The times reported by
the benchmark include both the reading of the uncompressed
files and the writing of the compressed files, in order to
compare the performance to the sequential snzip compression
tool. Three data sets from various application domains are used
to evaluate the benefits using data compression with MPI I/O.

a) Human Readable Text Data Sets: The first data set
is a collection of English language ebooks from Project
Gutenberg [3]. The generated data file consists of text files

concatenated into a single file, which results in an approx.
13.5GB file. The two data sets used here, a 27GB and a 54GB
file, are created by concatenating the 13.5GB file multiple
times.

b) Genomic Data Sets: The second data set contains two
FASTA formatted nucleotide sequences downloaded from the
National Center for Biotechnology Information (NCBI). The
two sequences used in our tests are the Larix sibirica (ID:
66971) [4], referred to as Genome 12 in our tests, since it is
around 12GB in size, and Ambystoma mexicanum [1] (ID:
381), referred to as Genome 30 and 30GB in size.

c) Dark Sky Simulations Data Sets: The third data set
is based on the Dark Sky simulations [2], which are a series
of cosmological simulations meant to help study the evolution
of a universe. The output files from these simulations con-
tain multivariate information about particles and cosmological
structures. The two data sets downloaded for our test are
approx. 16GB and 77GB in size.

TABLE I
EXECUTION TIMES AND OF SEQUENTIAL AND PARALLEL COMPRESSION

OF VARIOUS DATA SETS

Dataset Size Reduction Sequential 36 Procs 64 Procs
Gutenberg 27 40% 1142s 43.3s 30.2s
Gutenberg 54 40% 2282s 96.3s 61.7s
Genome 12 67% 338s 15.3s 11.9s
Genome 30 57% 1055s 42.0s 30.1s
DarkSky 16 24% 777s 24.5s 19.3s
DarkSky 77 32% 3175s 118.5 92.6s

Table I presents in the second column the average size
reduction achieved with Snappy compression on each data set.
Columns 3, 4, and 5, present the time it took to execute the
sequential snzip tool on each input file, as well as the MPI
code using the solution presented in this paper for performing
the compression using 36 and 64 processes respectively. The
results indicate significant performance improvements for the
version using MPI I/O for compressing the data sets, with a
speedup between 20 and 40 for the various benchmarks. The
speedup values for each individual test case are also shown in
fig. 5.

V. RELATED WORK

Data compression is a very actively researched field due to
its applicability to modern demands of data processing and
storage. For frequently used data, trading compression ratio
for compression/decompression speed is a useful approach.
LZ4 [13], for example, is a compression algorithm designed
specifically for speed. Though the compression ratio for LZ4 is
generally worse than other algorithms such as LZ77 [30], the
decrease in processing time is usually much greater in com-
parison. Google’s Snappy [8] compression library is related to
the Lempel-Ziv-Oberhumer family of compression algorithms
but is designed to incur low CPU usage and low execution
time when compared to similar compression libraries such as
LZO [28, 31]. There are also compression algorithms designed
specifically for floating point data [29], which are notoriously
difficult to compress with standard compression algorithms.



Fig. 5. Speedup of the parallel compression using MPI I/O over the sequential
snzip tool.

More recently, researchers have also experimented with lossy
compression techniques in scientific computing [32], since
lossy algorithms often provide performance advantages com-
pared to lossless algorithms.

In High Performance Computing, compression was used in
numerous projects to reduce the communication volumes and
times [15, 21, 23]. Since compressing and decompressing data
buffers consumes (significant) resources, these techniques have
however limited usability with decreasing network latencies
and increasing network bandwidth on today’s high-end com-
puter systems.

Compression is however widely utilized in file I/O. In [15]
the authors introduce data compression in collective I/O opera-
tion. Compression is however restricted to the communication
phases of the collective I/O operation, and does not impact
the file written to disk. The authors in [33] introduce the
ability to compress data in ADIOS file I/O operations, and
dynamically separate non-compressible and compressible data
into separate streams. In contrast to the work presented in this
paper however, ADIOS defines a proprietary file format and
does not aim to write generic data files in a compressed format.

In [38] authors have introduced compression to file I/O
operations for large scale simulations. The focus of the paper
was however not on integrating compression into MPI I/O
operations and understanding the impact on the interfaces
and applications, but evaluating where the compression should
occur in their architecture (helper cores, staging nodes, etc.).
Similarly, the authors in [10] incorporate data compression
into the I/O software stack, yet on the level above MPI I/O,
i.e. invoking MPI I/O operations on compressed data.

Lastly, handling compressed data files is common in
Hadoop [36] and Spark [37] applications. While these frame-
works arguable perform parallel I/O, neither of the two soft-
ware stacks manages shared-file parallel I/O, and thus sidestep
many of the problems and challenges discussed in this paper.

VI. CONCLUSIONS

In this paper we discussed the key challenges, requirements,
and solutions for supporting compressed data files in MPI I/O.
The paper detailed an approach for handling individual read
and write operations of compressed data files, and presented
an extension to the two-phase collective I/O algorithm to
support data compression. Furthermore, we implemented a
parallel I/O library operating on compressed data files based on
the Snappy compression library and the OMPIO parallel I/O
framework. The paper evaluated the new functionality using
multiple benchmarks using generated as well as real world
data sets. The results obtained show significant performance
improvements of up to 43% when writing a compressed output
file using collective I/O vs. an uncompressed file. The code
used for this paper is available on the webpages of the author
research group (https:://pstl.cs.uh.edu/projects/ompio.shtml).

This work can be further enhanced by including support
for other compression libraries such as bzip, and performing
further tests on other data sets, as well as other storage
and file systems. MPI furthermore supports the notion of
of an internal data representation which can be used for
performance improvements without having the interoperability
requirement discussed previously, i.e. it is acceptable if the
file cannot be read with another tool/software than the MPI
library used to write the file. Omitting the no gap in the
output file requirement and combining multiple compression
algorithms by using e.g. compression algorithms that have
been specifically designed for floating point values (e.g. [29])
could be used to define a highly performant internal data
representation.
Acknowledgments. Partial support for this work was provided
by the National Science Foundation under Award No. SI2-
SSI 1663887. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] Ambystoma mexicanum (dataset). https://www.ncbi.nlm.nih.gov/
genome/?term=asm291563v2, last visited 2020-03-02.

[2] Dark Sky Simulations. https://darksky.slac.stanford.edu/simulations/
ds14 a/, last visited 2020-03-02.

[3] Free ebooks - Project Gutenberg. https://www.gutenberg.org/wiki/Main
Page, last visited 2020-03-02.

[4] Larix sibirica (dataset). https://www.ncbi.nlm.nih.gov/genome?term=
GCA 004151065.1&cmd=DetailsSearch, last visited 2020-03-02.

[5] Snzip, a compression/decompression tool based on snappy. https:
//github.com/kubo/snzip, last visited 2020-03-02.

[6] Snappy framing format. https://github.com/google/snappy/blob/master/
framing format.txt, 2013.

[7] An introduction to BeeGFS. https://www.beegfs.io/docs/whitepaper/
Introduction to BeeGFS by ThinkParQ.pdf, 2018.

[8] Snappy: A fast compressor/decompressor. https://google.github.io/
snappy/, 2018.

[9] S. A. Brown, M. Folk, G. Goucher, and R. Rew. Software for Portable
Scientific Data Management. Computers in Physics, 7(3):304–308,
May/June 1993.



[10] Huy Bui, Hal Finkel, Venkatram Vishwanath, Salma Habib, Katrin Heit-
mann, Jason Leigh, Michael Papka, and Kevin Harms. Scalable parallel
i/o on a blue gene/q supercomputer using compression, topology-aware
data aggregation, and subfiling. In 2014 22nd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
pages 107–111. IEEE, 2014.

[11] Mohamad Chaarawi and Edgar Gabriel. Automatically Selecting the
Number of Aggregators for Collective I/O Operations. In Workshop on
Interfaces and Abstractions for Scientific Data Storage, IEEE Cluster
2011 conference, page t.b.d, Austin, Texas, USA, 2011.

[12] Mohamad Chaarawi, Edgar Gabriel, Rainer Keller, Richard L. Graham,
George Bosilca, and Jack J. Dongarra. OMPIO: A Modular Software
Architecture for MPI I/O. In in Y. Cotronis, A. Danalis, D. S.
Nikolopoulus, J. Dongarra (Eds.) ’Recent Advances in the Message
Passing Interface’, Lecture Notes in Computer Science, vol. 6960, pages
81–90. Springer, 2011.

[13] Yann Collet. Lz4: Extremely fast compression algorithm. https://lz4.
github.io/lz4/, 2013.

[14] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-
proved parallel I/O via a two-phase run-time access strategy. SIGARCH
Comput. Archit. News, 21(5):31–38, 1993.

[15] Rosa Filgueira, David E. Singh, Jess Carretero, Alejandro Caldern, and
Flix Garca. Adaptive-compi: Enhancing mpi-based applications perfor-
mance and scalability by using adaptive compression. The International
Journal of High Performance Computing Applications, 25(1):93–114,
2011.

[16] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel,
Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. In
Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[17] Jean-Loup Gailly and Mark Adler. The gzip home page. https://www.
gzip.org/, 2019.

[18] Jeff Gilchrist. Parallel data compression with bzip2. In Proceedings of
the 16th IASTED international conference on parallel and distributed
computing and systems, volume 16, pages 559–564, 2004.

[19] Hierarchical Data Format Group. HDF5 Reference Manual, September
2004. Release 1.6.3, National Center for Supercomputing Application
(NCSA), University of Illinois at Urbana-Champaing.

[20] Shweta Jha and Edgar Gabriel. Performance Models for Communication
in Collective I/O Operations. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages
982–991. IEEE Press, 2017.

[21] Jian Ke, Martin Burtscher, and Evan Speight. Runtime compression of
mpi messanes to improve the performance and scalability of parallel
applications. In Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, SC ’04, pages 59–, Washington, DC, USA, 2004. IEEE
Computer Society.

[22] Ketan Kulkarni and Edgar Gabriel. Evaluating Algorithms for Shared
File Pointer Operations in MPI I/O. In Proceedings of the International
Conference on Computational Science (ICCS), volume LNCS 5544,
pages 280–289, Baton Rouge, USA, 2009.

[23] V Santhosh Kumar, R Nanjundiah, Matthew J Thazhuthaveetil, and
R Govindarajan. Impact of message compression on the scalability of
an atmospheric modeling application on clusters. Parallel Computing,
34(1):1–16, 2008.

[24] Robert Latham, Robert Ross, and Rajeev Thakur. Implementing MPI-
IO Atomic Mode and Shared File Pointers Using MPI One-Sided
Communication. Int. J. High Perform. Comput. Appl., 21(2):132–143,
2007.

[25] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata
rich IO methods for portable high performance IO. In In Proceedings
of IPDPS’09, May 25-29, Rome, Italy, 2009.

[26] Grant Mackey, Saba Sehrish, and Jun Wang. Improving metadata man-
agement for small files in hdfs. In Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on, pages 1–4.
IEEE, 2009.

[27] Message Passing Interface Forum. MPI: A Message Passing Interface
Standard Version 3.1, June 2015. http://www.mpi-forum.org.

[28] Markus Franz Xaver Johannes Oberhumer. LZO - a real-time data
compression library. http://www.oberhumer.com/opensource/lzo/, 2008.

[29] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. Fast lossless
compression of scientific floating-point data. In Data Compression
Conference (DCC’06), pages 133–142. IEEE, 2006.

[30] Kunihiko Sadakane and Hiroshi Imai. Improving the speed of lz77
compression by hashing and suffix sorting. IEICE transactions on
fundamentals of electronics, communications and computer sciences,
83(12):2689–2698, 2000.

[31] David Salomon. Dictionary methods. In Data Compression The
Complete Reference Fourth Edition, chapter 3, pages 171–221. Springer,
2007.

[32] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. Explo-
ration of lossy compression for application-level checkpoint/restart. In
2015 IEEE International Parallel and Distributed Processing Sympo-
sium, pages 914–922. IEEE, 2015.

[33] Eric R Schendel, Saurabh V Pendse, John Jenkins, David A Boyuka II,
Zhenhuan Gong, Sriram Lakshminarasimhan, Qing Liu, Hemanth Kolla,
Jackie Chen, Scott Klasky, et al. Isobar hybrid compression-i/o interleav-
ing for large-scale parallel i/o optimization. In Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed
Computing, pages 61–72. ACM, 2012.

[34] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and
Collective I/O in ROMIO. In FRONTIERS 99: Proceedings of the The
7th Symposium on the Frontiers of Massively Parallel Computation, page
182. IEEE Computer Society, 1999.

[35] Romvault webpage. Understanding 7z compression file format. http:
//www.romvault.com/Understanding7z.pdf.

[36] Tom White. Hadoop: The Definitive Guide, pages 100–109.
O’ReillyMedia, Inc., second edition, October 2010.

[37] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[38] Hongbo Zou, Yongen Yu, Wei Tang, and Hsuanwei Michelle Chen.
Improving i/o performance with adaptive data compression for big
data applications. In 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, pages 1228–1237. IEEE, 2014.


